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Measurements with an atomic force microscope �AFM� offer a direct way to probe elastic properties of lipid
bilayer membranes locally: provided the underlying stress-strain relation is known, material parameters such as
surface tension or bending rigidity may be deduced. In a recent experiment a pore-spanning membrane was
poked with an AFM tip, yielding a linear behavior of the force-indentation curves. A theoretical model for this
case is presented here which describes these curves in the framework of Helfrich theory. The linear behavior
of the measurements is reproduced if one neglects the influence of adhesion between tip and membrane.
Including it via an adhesion balance changes the situation significantly: force-distance curves cease to be linear,
hysteresis and nonzero detachment forces can show up. The characteristics of this rich scenario are discussed
in detail in this paper.
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I. INTRODUCTION

Lipid bilayer membranes constitute one of the most fun-
damental components of all living cells. Apart from their
obvious structural role in organizing distinct biochemical
compartments, their contributions to essential functions such
as protein organization, sorting, or signalling are now well
documented �1�. In fact, their tasks significantly exceed mere
passive separation or solubilization of proteins, since often
mechanical membrane properties are intricately linked to
these biological functions, most visibly in all cases which go
along with distinct membrane deformations, such as exo- and
endocytosis �2�, vesiculation �3–5�, viral budding �6�, cy-
toskeleton interaction �7�, and cytokinesis �8�. Consequently,
a quantitative knowledge of the material parameters which
characterize a membrane’s elastic response—most notably
the bending modulus �—is also biologically desirable.

Several methods for the experimental determination of �
have been proposed, such as monitoring the spectrum of
thermal undulations via light microscopy �9,10�, analyzing
the relative area change of vesicles under micropipette aspi-
ration �11,12�, or measuring the force required to pull thin
membrane tethers �13–16�. With the possible exception of
the tether experiments, these techniques are global in nature,
i.e., they supply information averaged over millions of lipids,
if not over entire vesicles or cells. Yet, in a biological context
this may be insufficient �17�. For instance, membrane prop-
erties such as their lipid composition or bilayer phase �and
thus mechanical rigidity� have been proposed to vary on sub-
microscopic length scales �18,19�. Despite being biologically
enticing, this suggestion, known as the “raft hypothesis,” has
repeatedly come under critical scrutiny �20–22�, precisely
because the existence of such small domains is extremely
hard to prove.

An obvious tool to obtain mechanical information for
small samples is the atomic force microscope �AFM� �23�,
and it has indeed been used to probe cell elastic properties

�such as, for instance, their Young modulus� �24,25�. Yet,
obtaining truly local information still poses a formidable
challenge. Apart from several complications associated with
the inhomogeneous cell surface and intracellular structures
beneath the lipid bilayer, one particularly notable difficulty is
that the basically unknown boundary conditions of the cell
membrane away from the spot where the AFM tip indents it
preclude a quantitative interpretation of the measured force,
i.e., a clean way to translate this force into �local� material
properties. To overcome this problem Steltenkamp et al.
have recently suggested to spread the cell membrane over an
adhesive substrate which features circular pores of well-
defined radius �26�. Poking the resulting “nanodrums” would
then constitute an elastomechanical experiment with pre-
cisely defined geometry. Using simple model membranes,
the authors could in fact show that a quantitative description
of such measurements is possible using the standard con-
tinuum curvature-elastic membrane model due to Canham
�27� and Helfrich �28�.

Spreading a cellular membrane without erasing interesting
local lipid structures obviously poses an experimental chal-
lenge; but the setup also faces another problem which has its
origin in an “elastic curiosity”: even significant indentations,
which require the full nonlinear version of the Helfrich
shape equations for their correct description, end up display-
ing force-distance curves which are more or less linear—a
finding in accord with the initial regime of membrane tether
pulling �29,30�. Yet, this simple functional form makes a
unique extraction of the two main mechanical properties,
tension and bending modulus, difficult. Is the nanodrum
setup thus futile?

In the present work we develop the theoretical basis for a
slight extension of the nanodrum experiment that will help to
overcome this impasse. We will show that an additional ad-
hesion between the AFM tip and the pore-spanning mem-
brane will change the situation very significantly—
quantitatively and qualitatively. Force-distance curves cease

PHYSICAL REVIEW E 74, 061914 �2006�

1539-3755/2006/74�6�/061914�12� ©2006 The American Physical Society061914-1

http://dx.doi.org/10.1103/PhysRevE.74.061914


to be linear, hysteresis, nonzero detachment forces, and
membrane overhangs can show up, and various new stable
and unstable equilibrium branches emerge. The magnitude
and characteristics of all these new effects can be quantita-
tively predicted using well established techniques which
have previously been used successfully to study vesicle
shapes �31–35�, vesicle adhesion �36,37�, colloidal wrapping
�38–40� or tether pulling �29,30,41–43�.

The key “ingredient” underlying most of the new physics
is the fact that the membrane can choose its point of detach-
ment from the AFM tip. Unlike in the existing point force
descriptions �29,30�, in which a certain �pushing or pulling�
force is applied at one point of the membrane, our descrip-
tion accounts for the fact that the generally nonvanishing
interaction energy per unit area between tip and membrane
co-determines their contact area over which they transmit
forces, and thereby influence the entire force-distance curve.
What may at first seem like a minor modification of bound-
ary conditions quickly proves to open a very rich and partly
also complicated scenario, whose various facets may subse-
quently be used to extract information about the membrane.
In fact, Smith et al. �41,42� have demonstrated in a related
situation that the competition between adhesion and tether
pulling for substrate-bound vesicles gives rise to various
first- and second-order transitions, details of which depend in
a predictable way on the experimental setup. In our case we
will for instance find snap-on and snap-off events between
tip and membrane, which rest on the fact that binding is not
predetermined, and whose correct description is very impor-
tant for reliably interpreting any AFM force experiments.
Moreover, we will also see that the very occurrence of teth-
ers is a much more subtle phenomenon, since an adhering
membrane pulled upward may in fact prefer to detach rather
than being pulled into a tether—a question treated previously
�and on the linear level� by Boulbitch �44�.

Our paper is organized as follows: in Sec. II we introduce
the model of our system and discuss the relevant energies. In
Sec. III we present the equations that have to be solved in
order to find membrane profiles, force-indentation curves,
and detachment forces. This will also include a treatment of
the nonlinear case which was only mentioned very briefly in
Ref. �26�. In Sec. IV the results of our calculations are sum-
marized and compared to existing �26� measurements. We
end in Sec. V with a discussion how the predictions for in-
dentation and adhesion characteristics can be used to extract
material properties in future experiments.

II. THE MODEL

A. Geometry of the system

We consider a flat solid substrate with a circular pore of
radius Rpore. A lipid bilayer membrane is adsorbed onto the
substrate and spans the pore. In the situation we want to
analyze an AFM tip is used to probe the properties of the free
pore-spanning membrane. We assume that the tip has a para-
bolic shape with curvature radius Rtip at its apex. Further-
more, we restrict ourselves to the static axisymmetric situa-
tion in which the tip pokes the free-standing membrane
exactly in the middle of the pore �see Fig. 1�.

For a certain downward force F�0 the membrane is in-
dented to a corresponding depth h0�0 which is measured
from the plane of the substrate to the depth of the apex of the
tip. Note that it is also possible to pull the membrane up with
a force F�0 in the opposite direction if attractive interac-
tions attach the membrane to the tip.

In the following, we will model the bilayer as a two-
dimensional surface. This is a valid approach provided the
thickness of the membrane �approx. 5 nm� is much smaller
than �i� the membrane’s lateral extension as well as �ii�
length scales of interest such as local radii of curvature.

With this geometric setup in mind, let us now consider the
different energy contributions we want to include in our
model.

B. Energy considerations

The total energy of the system “pore-tip” comprises dif-
ferent contributions: the membrane is under a lateral tension
�. To pull excess area into the pore, work has to be done
against the adhesion between membrane and flat substrate
�45�. It is given by � times the excess area �46�. Additionally,
a curvature energy is associated with the membrane. Accord-
ing to Canham �27� and Helfrich �28� the Hamiltonian for an
up-down symmetric membrane is then

Eelast = �
�

dA�� +
�

2
K2 + �̄KG� , �1�

where � denotes the surface of the membrane part which
spans the pore. The proportionality constants � and �̄ are
called bending rigidity and saddle-splay modulus, respec-
tively. The Gaussian curvature KG is the product of the two
principal curvatures whereas K is their sum �47,48�. Note
that the last term of energy �1� yields zero in our specific
problem �49�.

With the help of the two material constants � and � one
can define a characteristic lengthscale

FIG. 1. Illustration of the geometry. A parabolic tip with curva-
ture radius Rtip indents a pore-spanning membrane with a force F to
a certain depth h0. The radius of the pore is Rpore. The membrane
detaches from the tip at a radial distance �=c. The two possible
parametrizations h��� and ��s� are explained in the beginning of
Sec. III.
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� ª��

�
, �2�

which does not depend on geometric boundary conditions
such as the radius of the tip or the pore but only on properties
of the membrane. On scales larger than � tension is the more
important energy contribution; on smaller scales bending
dominates.

Apart from tension and bending, an adhesion between tip
and membrane may contribute to the total energy. We as-
sume that it is proportional to the contact area Acontact be-
tween tip and membrane with a proportionality constant w,
the adhesion energy per area.

If the indentation h0 is given and one wants to determine
the force F, the total energy can thus be written

Etotal
h0 = �

�

dA�� +
�

2
K2� − wAcontact. �3�

Under certain circumstances, however, it is more convenient
to consider the problem for a given force F. Both ensembles
�“constant indentation” vs “constant force”� are connected
via a Legendre transformation �41,42�, Etotal

F =Etotal
h0 −Fh0.

While the ground states one obtains for the two ensembles
will be the same, questions of stability depend on the en-
semble: a profile found to be stable under constant height
conditions is not necessarily stable under constant force con-
ditions.

The route we want to follow here in order to find force-
indentation curves is to determine the equilibrium shapes of
the nonbound section of the membrane via a functional mini-
mization. The energy contributions caused by the bounded
section of the membrane enter via the appropriate boundary
conditions �see Sec. III and Appendix A�. These imply that
the contact point c is not known a priori but has to be deter-
mined as well �“moving boundary problem”�. In the next
section we will show how one can set up the appropriate
mathematical formulation of the problem to get membrane
profiles and force-indentation curves.

III. SHAPE EQUATION AND APPROPRIATE BOUNDARY
CONDITIONS

To describe the shape of the membrane we use two dif-
ferent kinds of parametrization �see Fig. 1�: for the linear
approximation it is sufficient to use “Monge” gauge where
the position of the membrane is given by a height h��� above
�or below� the underlying reference plane. The disadvantage
of this parametrization is that it does not allow for “over-
hangs.” Since these may be present in the full nonlinear
problem, we will use the “angle-arclength” parametrization
in the exact calculations: the angle ��s� with respect to the
horizontal substrate as a function of arclength s fully de-
scribes the shape.

A. Linear approximations

To get the profile of the free membrane one has to solve
the appropriate Euler-Langrange �“shape”� equation. This
equation is typically a fourth order nonlinear partial differ-

ential equation and thus in most cases impossible to solve
analytically. One may, however, consider cases where the
membrane is indented only a little and gradients are small. In
that case one may linearize the energy functional. In the
constant indentation ensemble one gets for the free part

E = �
�free

dA	
�

2
��2h� +

�

2
��h�2� , �4�

where dA	 is the area element on the flat reference plane and
�free is the projected surface of the free pore-spanning mem-
brane. The symbol � denotes the two-dimensional nabla op-
erator in the reference plane.

The appropriate shape equation can be derived by setting
the first variation of energy �4� to zero, yielding

�2��2 − �−2�h = 0. �5�

The solution to this equation is a linear combination of the
eigenfunctions of the Laplacian corresponding to the eigen-
values 0 and �−2. For axial symmetry it is given by h���
=h1+h2 ln�� /��+h3I0�� /��+h4K0�� /��, where I0 and K0 are
the modified Bessel functions of the first and the second
kind, respectively �50�. The constants h1 , . . . ,h4 are deter-
mined from the appropriate boundary conditions �see Appen-
dix A�:

h�Rpore� = 0, h�c� = − h0 +
c2

2Rtip
, �6a�

h��Rpore� = 0, h��c� =
c

Rtip
, �6b�

and h��c� =
1

Rtip
−�2w

�
, �6c�

where a dash denotes a derivative with respect to �. Even
though the differential equation is of fourth order, five con-
ditions are required due to its moving boundary nature, i.e., c
is to be determined from an adhesion balance—which is in
fact the origin of the fifth condition �6c� �see Appendix A�.

The solution of the boundary value problem �5� and �6�
can be used in two ways to calculate the force for a pre-
scribed indentation: first, one can insert the profile back into
the functional �4� to obtain the energy of the equilibrium
solution, which will then parametrically depend on the in-
dentation h0. Its derivative with respect to h0 yields the force
F. Second, one can also consider stresses: in analogy to elas-
ticity theory �51� F is given by the integral of the flux of
surface stress �52� through a closed contour around the tip.

The second approach is used in the present work; it has
the advantage that the final expression for the force can be
written in a closed form �26� �see also Appendix B�:

F = 2	Rpore 
 �� �K

��
�

�=Rpore

. �7�

This equation is exact. Inserting the solution h��� of the
boundary value problem �5� and �6� into �7� yields the value
of the force in the linear regime.
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A little warning might be due here: expression �7� is
evaluated at the rim of the pore where the profile is flat even
for high indentations. One might thus wonder whether insert-
ing the small gradient solution would actually lead to an
exact result. This is, however, not the case, because the mem-
brane shape at the rim predicted by the linear calculation is
not identical with the prediction from the full nonlinear
theory—except for its flatness, which is enforced by the
boundary conditions. There is no magical way to avoid solv-
ing the nonlinear shape equation if one wants the exact an-
swer.

B. Complete nonlinear formulation

Let us now shift to the angle-arclength parametrization
and consider the full nonlinear problem. In principle, the
constant height ensemble could be used here as well. It is,
however, technically much easier to fix F instead in order to
reduce the number of boundary conditions one has to fulfill
at the rim of the pore �see below and Appendix C�.

In this paragraph all variables with a tilde are scaled with

	�, i.e.,: ẼªE / �	��, F̃ªF / �	��, etc. The energy func-
tional of the free membrane can then be written
�33–35,39,41�:

Ẽ = �
s�

s̄

dsL̃ = �
s�

s̄

ds
���̇ +
sin �

�
�2

+
2�

�2 + ����̇ − cos ��

+ �z�ż − sin �� − F̃ż� , �8�

where s� is the arclength at the contact point c and s̄ the
arclength at Rpore. The dot denotes the derivative with respect
to s. The Langrange multiplier functions �� and �z ensure
that the geometric conditions �̇=cos � and ż=sin � are ful-
filled everywhere.

In order to make the numerical integration easier let
us rewrite the problem in a Hamiltonian formulation

�33,34,39,41�: the conjugate momenta are p�=�L̃ /��̇

=2���̇+sin��� /��, p�=�L̃ /��̇=��, and pz=�L̃ /�ż=�z− F̃.
The �scaled� Hamiltonian is then given by

H̃ = �̇p� + �̇p� + żpz − L̃

=
p�

2

4�
−

p� sin �

�
−

2�

�2 + p� cos � + �pz + F̃�sin � . �9�

Note that H̃ is not explicitly dependent on s and is thus a
conserved quantity. Instead of one fourth order one then has
six first order ordinary differential equations, the Hamil-
tonian equations:

�̇ =
�H̃

�p�

=
p�

2�
−

sin �

�
, �10a�

�̇ =
�H̃

�p�

= cos � , �10b�

ż =
�H̃

�pz
= sin � , �10c�

ṗ� = −
�H̃

��
= 
 p�

�
− �pz + F̃��cos � + p� sin � , �10d�

ṗ� = −
�H̃

��
=

p�

�
� p�

4�
−

sin �

�
� +

2

�2 , �10e�

ṗz = −
�H̃

�z
= 0. �10f�

According to the last equation, pz has to be constant along
the profile. Its value can be found by considering the integral
over the flux of surface stress which has to equal the applied
force. This implies that pz vanishes everywhere �see Appen-
dix B�.

Equations �10� can be solved numerically subject to the
boundary conditions �see also Appendices A and C�:

��s̄� = 0, ��s�� = � , �11a�

�̇�s�� =
�cos ��3

Rtip
−�2w

�
, �11b�

and H̃ = 0, �11c�

where contact radius c and contact angle � are connected via
c=Rtip tan �. The solution to �10� and �11� gives the inden-

tation h0 for some prescribed force F̃.

IV. RESULTS

This section will summarize the characteristic features of
the solution to the boundary value problems �5�, �6�, �10�,
and �11�. In addition, the theory will be shown to be in ac-
cord with available experimental results.

We will introduce some additional variable rescaling in
order to make generalizations of the results easier: lengths
will be scaled with Rtip. We also define

�̃ ª

�Rtip
2

�
, w̃ ª

2wRtip
2

�
, and f̃ ª

FRtip

	�
. �12�

In a typical experiment the curvature of the tip is of the order
of ten nanometer �5–40 nm� and pore radii may lie between
30 and 200 nm �53�. The bending rigidity of a fluid mem-
brane may vary between one and a hundred kBT �54�. One
expects a maximum surface tension of the order of a few
mN/m, which is approximately the rupture tension for a fluid
phospholipid bilayer �55�. A maximum value of the adhesion
can be found by assuming that a few kBT per lipid is stored
if membrane and tip are in contact. One arrives at wmax
�10 mJ/m2. For the continuum theory to be valid Eqs. �6c�
and �11b� imply that �2wmax/��1/d, where d�5 nm is the
bilayer thickness. This estimate yields approximately the
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same maximum value for wmax as before since � is at most
100 kBT.

Thus, �̃ and w̃ can in principal vary between 0 and 103.
Realistically, if we set Rtip=10 nm and consider a typical
fluid phospholipid bilayer with ��20 kBT, �̃ and w̃ are of
the order of 1. Furthermore, we will focus on a pore radius of

R̃pore=3 in the following.
In order to understand, how adhesion energy modifies

the force-distance behavior, let us first briefly revisit the
case where there is no adhesion between tip and membrane
�w̃=0�.

A. No adhesion between tip and membrane

In Fig. 2 the shapes of the membrane for different values
of indentation are presented in scaled units. The linear cal-
culations are dotted whereas the exact result is plotted with
solid lines. For small indentations the two solutions overlap;

for increasing h̃0, however, the deviations become larger just
as one expects for a small gradient approximation �see also
Ref. �39� for another example�. While the differences are
noticeable, they appear fairly benign, such that one would
maybe not expect big changes in the force-distance behavior.
We will soon find out that these hopes will not be fulfilled.

A deeper indentation also means that the tip has to exert a
higher force. In Figs. 3 and 4 log-log plots of force-distance
curves for different values of �̃ are shown. The dashed line

marks the maximum indentation h̃0,max= R̃pore
2 /2 which is al-

lowed by the geometry of tip and pore. In the limit of high

forces all curves converge and approach h̃0,max; for small

forces the curves are linear in f̃ . Let us quantify the indenta-
tion response by defining the �scaled� apparent spring con-

stant K̃ of the nanodrum-AFM system via

K̃ = � � f̃

�h̃0

�
w̃,�̃

. �13�

A linear force-distance curve has a constant K̃ and thus fol-

lows an apparent Hookean behavior f̃ =K̃h̃0. In unscaled

units, the spring constant is given by K=�F /�h0=K̃	� /Rtip
2 .

For typical values Rtip=10 nm and �=20 kBT this implies

K=K̃
2.6 mN/m.
The smaller �̃, the less force has to be applied to reach the

same indentation �see Fig. 3�. For decreasing �̃ the force-
distance curves converge to the limiting curve of the pure
bending case, for which �̃=0; this is plotted dashed-dotted in
Fig. 3. In the opposite pure tension limit ��→0 or �̃→
�

FIG. 2. Membrane profiles for different indentations h̃0, all
for �̃=1 �solid lines: nonlinear calulations, dashed lines: linear
approximation, gray shades: AFM tips�. The corresponding forces

f̃�h̃0� for the three different indentations are �nonlinear calcula-

tions�: f̃�0.3�=0.81, f̃�1�=2.45, f̃�2�=4.27.

FIG. 3. Force-distance curves for w̃=0 and �̃= 1
16 , 1

4 ,1 ,4 ,16,
and 64 �� increasing from left to right�. The curve for �̃=0 is
dashed-dotted. The inset shows the corresponding scaled apparent

spring constant K̃ �see Eq. �13�� in the small force limit, illustrating
its two different regimes of small and large tension with a crossover
around �̃�1.

FIG. 4. Scaled force-distance curves for w̃=0 and �̃

= 1
16 , 1

4 ,1 ,4 ,16, and 64 �� increasing from right to left�. The solu-
tion for �̃→
 in the linear regime is dashed-dotted. Nonlinear re-
sults are plotted with solid lines, the linear approximation is dotted.
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the curves become essentially linear in �̃, as can be seen
clearly after scaling out the tension �see Fig. 4�. It is possible
to calculate this second limiting curve in the linear regime:
the linearized Euler-Lagrange equation reduces to the
Laplace equation, �h=0, which is solved by h���=d1

+d2 ln�� /Rpore� in the present axial symmetry. The constants
d1 and d2 can be determined with the help of the two bound-
ary conditions h�Rpore�=0 and h�c�=−h0+c2 /2Rtip. The con-
tact point c is then determined by a straightforward energy
minimization. The final result for the indentation depth is:

h̃0
�̃→
 =

f̃/�̃

4 
1 − ln� f̃/�̃

2R̃pore
2 �� , �14�

which is plotted dashed-dotted in Fig. 4. At any given pen-
etration the force is now strictly proportional to the tension.
Notice also the remarkably weak �logarithmic� dependency
of penetration on pore size.

All force-distance curves presented in this section exhibit
a linear behavior for small forces. In this limit the scaled
spring constant for the systems just discussed is well de-

scribed by the empirical relation K̃�1.76+ �̃0.89 �see inset in
Fig. 3�. Combining this with our observation that for typical

system parameters K=K̃
2.6 mN/m, we see that a nano-
drum’s stiffness can be very well matched by available �soft�
AFM cantilevers, showing that the suggested experiments
are indeed feasible. In fact, Fig. 5 shows the results of such
an indentation experiment �solid gray line�. Here, a fluid
DOTAP �1,2-dioleoyl-3-trimethylammonium-propane chlo-
ride� membrane was suspended over a pore of radius Rpore
=90 nm and subsequently probed with a tip of radius Rtip
=20 nm �26�. The apparent spring constant is found to be
3.9 mN/m. To fit the data we optimized the material param-
eters � and �. The linear approximation �asymptotically�
matches the curve down to an indentation depth of about
40 nm as one can see in Fig. 5 �dashed line�. For larger

indentations the small gradient assumption breaks down. The
nonlinear calculation �solid black line� describes the data
correctly down to a much deeper penetration depth of
150 nm but diverges for larger values. This deviation is most
likely not a failure of the elastic model but a consequence of
our simplified assumptions for the tip geometry. As shown in
Fig. 1�b� of the supplementary information to Ref. �26� the
tip is parabolic at its apex, but further up it narrows quicker
and assumes a more cylindrical shape. It therefore can pen-
etrate the pore much deeper than one would expect if the
parabolic shape were correct for the entire tip.

Apart from this difficulty, theory and experiment are in
good agreement. There is, however, a catch. Since we cannot
trust the force-distance behavior close to the depth saturation
�due to its displeasingly strong dependence on the actual tip
shape�, the remaining interpretable part of the force-distance
curve is linear, and its slope is the only parameter that can be
extracted from the data �56�. For the theoretical calculation
one needs two parameters, � and �. Fitting both to a line is
not possible. In Ref. �26� this obstacle was overcome by
estimating � from other measurements to be about 10−19 J.
The surface tension � could then be adjusted to 1.1 mN/m to
match the data—which, reassuringly, is a very meaningful
value.

Alternatively, one may proceed in a different manner. In
the experiment a small snap-off peak could be observed upon
retraction of the AFM tip which was due to the attraction
between tip and membrane. Although this could be neglected
in the interpretation of the measurements of Ref. �26�, one
may think of deliberately increasing the adhesion between
membrane and tip in a follow-up experiment by chemically
functionalizing the tip. With this additional tuning parameter
one may get further information on the values of the material
parameters in question.

B. Including adhesion between tip and membrane

In the following, we will also allow for adhesion between
tip and membrane, i.e., w̃ is not necessarily equal to zero.
This will change the qualitative behavior of the force-
distance curves dramatically: for fixed �̃ and w̃ different so-
lution branches can be found. A hysteresis may occur as
well, as we will see in the next section. Additionally, stable
membrane profiles exist even if the tip is pulled upward. It is
therefore possible to calculate the maximum pulling force
that can be applied before the tip detaches from the mem-
brane and relate it to the value of the adhesion between tip
and membrane.

1. Weak adhesion energy

In this section, we will first investigate the case of weak
adhesion, w̃�5. The scaled surface tension �̃ will be fixed to
1. It turns out that once the tip is adhesive, overhang profiles
may occur, i.e., shapes where at some point ���s���90°. We
will first ignore these solution branches and come back to
them later.

Figure 6 illustrates force-distance curves for w̃
=0,1 , . . . ,5. Compared to the nonadhesive case, for which
an essentially linear behavior levels off toward maximum

FIG. 5. Comparison between experiment �solid gray line� and
theory �dashed line: linear approximation; solid black line: nonlin-
ear calculations� �26�. The theoretical curves are obtained with the
following parameters: Rpore=90 nm, Rtip=20 nm, �=10−19 J
�24kBT, �=1.1 mN/m.
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penetration, adhesive tips behave quite differently. Already
for w̃=1 an initial Hookean response at small forces is soon
followed by a regime in which the system displays a much
greater sensitivity toward an externally applied stress, i.e.,

where the scaled spring constant K̃ drops at intermediate
penetrations. Physically this of course originates from the
fact that adhesion helps to achieve higher penetrations, be-
cause the tip is pulled toward the membrane, but notice that

this does not lead to a uniform reduction of K̃: softening only
sets in beyond a certain indentation.

Shortly beyond w̃=1 a point is reached where the force-
distance curve displays a vertical slope at which the apparent

spring constant K̃ vanishes. For even larger values of adhe-
sion a hysteresis loop opens, featuring a locally unstable re-

gion with K̃�0. This is the case for w̃=2, and the region
around the instability is magnified in the inset of Fig. 6.

Notice that the dotted branch corresponding to K̃�0 still
belongs to solutions for which the functional �3� is stationary,

yet the energy plotted against penetration h̃0 �or, alterna-
tively, contact angle �� has a local maximum, confirming that
these solutions are unstable against contact point variations.
The two dashed branches in the inset of Fig. 6 have a posi-

tive K̃ and correspond to local minima in the energy, how-
ever, they are globally unstable against the alternative mini-

mum of larger or smaller h̃0. The true global minimum is
indicated by the bold solid curve, which exhibits a disconti-

nuity at f̃ =0.414.
Depending on the current scanning direction this hyster-

etic force-distance curve manifests itself in a snap-on or
snap-off event. Such a behavior is reminiscent of a buckling
transition �such as for instance Euler buckling of a rod under
compression �51��—with two caveats: first, notice that the
membrane does not stay flat up to a critical buckling force at
which it suddenly yields; rather, the system starts off with a
linear stress-strain relation and only later undergoes an
adhesion-driven discontinuity. Appreciating this point is

quite important for the interpretation of measured force-
distance curves: upon approach of tip and membrane the
snap-on will occur neither at zero force nor at zero penetra-
tion. Second, one should not forget that hysteresis is ulti-
mately a consequence of the energy barrier which goes along
with such discontinuities. For macroscopic systems this bar-
rier is typically so big that the transition actually happens at
either of the two end points of the S-shaped hysteresis curve,
where the barrier vanishes �the “spinodal points”�. However,
for nanosystems barriers are much smaller, comparable to
thermal energy kBT, such that thermal fluctuations can assist
the barrier-crossing event. In the present case the barrier at
the equilibrium transition point is about 1�, i.e., about 20kBT

for typical bilayers. However, already at f̃ =0.5 its magnitude
has decreased by about 20%. This shows that we have to
expect a narrowing down of the hysteresis amplitude com-
pared to an athermal buckling scenario.

Upon increasing the adhesion w̃ even further, one will
reach a critical value w̃0 at which the “back-bending branch”

of the force-distance curve touches the vertical line f̃ =0. At
this point the tip is being pulled into the pore even if there is
no force at all. Conversely, neglecting barrier complications,
this also implies that at the critical adhesion energy w̃= w̃0 an
infinitesimal pulling force will suffice to unbind tip and
membrane, even though the adhesion between tip and mem-
brane is greater than zero. It is very important to keep this
fact in mind if one wants to use AFM measurements for the
determination of adhesion energies.

For w̃� w̃0 one obtains stable solutions even when pulling

the tip upward �where f̃ �0� �57�. The maximum possible

force before detachment, f̃det, again corresponds to the left-
most point of the back bend, and it increases with increasing
w̃; we will come back to this later. Notice that detachment

always happens for values of h̃0 which are positive, i.e.,
when the AFM tip is still below the substrate level. Contrary
to what one might have expected, pulling will in this case not
draw the membrane upwards into a tubular lipid bilayer
structure �a “tether”�, which at some specific elongation will
fall off from the tip and snap back. Rather, the strong adhe-
sion pulls the tip far into the pore, and while pulling on it
indeed lifts it up, unbinding still happens below pore rim
level.

2. Strong adhesion energy

At even larger adhesion energy entirely new stationary
solution branches emerge, as Fig. 7 illustrates for w̃
� �5,10,15� and �̃=1. We first recognize the well-known
hysteretic branch, already seen in Fig. 6, which for increas-
ing w̃ extends to much larger negative forces, even though

the snap-off height h̃0 does only change marginally. The
shapes of two typical profiles are illustrated in the insets c
and d. Notice that this branch is always connected to the
origin, but for larger values of w̃ it starts off into the third

quadrant �negative values for f̃ and h̃0�. At first sight it seems
that we finally get solutions which correspond to a pulled-up
membrane; however, this region close to the origin corre-
sponds to a maximum and is thus unstable.

FIG. 6. Force-distance curves for �̃=1 and w̃=0,1 ,2 ,3 ,4 ,5
�from right to left�. The region of hysteresis in the curve for w̃=2 is

magnified in the inset. In this case the energy barrier at f̃ =0.414 is
approximately 1�. Overhang branches are omitted.
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�a� Overhang branches. Contrary to the hysteretic
branches, the new branches depicted in Fig. 7 do not connect
to the origin. This classifies them as a genuinely nonlinear
phenomenon, since they cannot be obtained as a small per-

turbation around the state f̃ = h̃0=0. In the first quadrant

� f̃ , h̃0�0� they all correspond to profiles which show over-
hangs �see inset a and b�. These branches had been omitted
in Fig. 6, since for weak adhesion they always correspond to
maxima and are thus irrelevant. This changes for stronger
adhesion, though, where they become stable in certain re-
gions �for instance, inset b is locally stable�. The details by
which this happens are complicated and will be discussed in
more detail below.

Following the new branches to negative forces we see that

the one for w̃=15 loses its overhang around f̃ �−6. That this
can happen continuously is not surprising, since within
angle-arc-length parametrization there is nothing special
about the point where ���=90° �only the shooting method
might use occurrences of ����90° as a potential termination
criterion for integration�.

�b� Branch splitting. We also see that �for sufficiently
large w̃� there is a point where the hysteresis branch inter-

sects the new nonlinear branch. There the values of f̃ and h̃0
coincide for both branches, but the detachment angle � and
the total energy of the profile are generally different. How-
ever, the difference in energy at the intersection decreases
with increasing w̃, and around w̃=15.3 it finally vanishes. At
this degenerate point a branch splitting occurs, where the
connectivity of the two branches rebridges, as illustrated in
the lower left inset in Fig. 7. Rather than connecting to the
origin, the wide loop of the original hysteresis branch now
joins into the overhang branch of the first quadrant, while its
bit that was connected to the origin now joins into the over-
hang branch in the third quadrant.

�c� Cusps. Figure 8 shows the force-distance curve
branches for the even larger adhesion energy w̃=20. This
depicts a situation well after the branch splitting, so we rec-
ognize the old hysteretic branch connecting with overhangs,
and the branch connecting to the origin extending exclu-
sively in the third quadrant. In contrast to Fig. 7, the line
styles in Fig. 8 are chosen to illustrate local minima �solid�
or maxima �dotted�. What immediately strikes one as surpris-
ing is that the profiles at f̃ =−4 belonging to the insets f and
h both correspond to maxima, even though they sit on both
sides of a back-bending branch, close to its end �compare
this to the “usual” scenario at � f̃ �−49, h̃0�3.6�. Moreover,
the solution belonging to inset f turns into a local minimum
for slightly more negative forces, without any noticeable fea-
tures of the branch. How can this happen?

The explanation is illustrated in the lower left inset in Fig.
8, which shows the total energy as a function of detachment
angle �. Recall that extrema in this plot correspond to sta-
tionary solutions. As can be seen, the energy is multivalued,
meaning that there exists more than one solution at a given
detachment angle �these would then also differ in their value

of their penetration h̃0�. But more excitingly, this graph ex-
hibits a boundary extremum at a lowest possible nonzero
value of � in the form of a cusp. This is how one can have
two successive maxima on a curve without an intervening
minimum—the minimum is simply not differentiable. Hence,
there is a third solution branch, corresponding to the cusp, at
which the contact curvature condition from Eq. �11b� is not
satisfied, because this condition is blind to the possibility of
having nondifferentiable extrema. Plotting this cusp branch
also into Fig. 8, we finally understand how the switching of
a maximum into a minimum happens: it occurs at the point
of intersection with the cusp branch. As the lower left inset
in Fig. 8 illustrates, the maximum belonging to the solution f
joins the cusp-minimum �belonging to solution �g�� in a

FIG. 7. Force-distance curves
for �̃=1 and w̃=5 �solid�, 10
�dashed�, and 15 �dotted�. A thin-
ner line style is used for those
parts of the curves where the cor-
responding profiles exhibit over-
hangs. In the insets �a�– �d� pro-

files for different values of � f̃ , h̃0�
are depicted �scaling is h̃ : �̃=5:3�.
In the inset on the lower left
corner the “branch splitting” is
shown as discussed in the text
��w̃=15.0 �dotted line� and 15.5
�solid line��.
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boundary flat point, roughly at force f̃ =−4.8. For more nega-
tive forces this flat point turns up, leaving a boundary cusp
maximum and a new differentiable minimum. Notice that a

similar exchange happens once more at � f̃ �−26.4, h̃0�1.6�.
Incidentally, since at the cusp the contact curvature condition
is not satisfied, and since this is the only point where the
adhesion energy w̃ enters, the location and form of the cusp
branch is independent of the value of w̃.

The existence of the cusp branch poses the question,
whether the solutions corresponding to it are physically rel-
evant �at least the ones which are minima�. It is not so much
the lack of differentiability at a cusp minimum which causes
concern, but rather the fact that it is located at a boundary.

Take for instance the Ẽ��� curve in the lower left inset of

Fig. 8 corresponding to f̃ =−4. Now consider a �nonequilib-
rium� solution which sits on the upper branch, somewhere
between the solutions g and h. To lower the energy, this
solution will reduce the detachment angle �, thereby ap-
proaching the minimum at g. But once g has been reached,
no further reduction in � seems possible, since for smaller
values no equilibrium solution exists. The crucial point is
that our present theory is insufficient to answer what else
would be going on for smaller �. It could for instance be that
there are indeed solutions, but they are not time independent.
This might be analogous to the well-known situation of a
soap film spanned in the form of a catenoidal minimal sur-
face between two coaxial circular rings of equal radius R. It
is easy to show that for a ring separation exceeding 1.325 R
no more stationary solution exists, even though the limiting
profile is in no way singular �58�. However, when slowly
pulling the two rings beyond this critical separation, the soap
film does not suddenly rupture. Rather, it becomes dynami-
cally unstable and begins to collapse. In the case we are
studying here, the system drives itself to the singular bound-
ary point, and without a truly dynamical treatment it is not

possible to conclude whether it would remain there or start to
dynamically approach a different solution. For this reason we
do not want to overrate the significance of the cusp branch;
yet, its existence is still important in order to explain the
behavior of the other “regular” branches, for instance their
metamorphosis from maximum-branches into minimum-
branches or vice versa.

�d� Detachment forces. A measurable quantity in the ex-
periment is the detachment force between tip and membrane,

which is the maximum applicable pulling force f̃det before
the tip detaches from the membrane. In Fig. 9 this force is
plotted as a function of adhesion energy w̃ for different val-
ues of the scaled tension �̃. Starting from a certain threshold

adhesion w̃thr��̃�, below which no hysteresis occurs, f̃det de-
creases with increasing w̃ and exhibits a linear behavior for
higher adhesions. Increasing �̃ also increases the threshold

FIG. 8. Force-distance curves
for �̃=1 and w̃=20 �including
cusp branch�. Solid lines corre-
spond to local minima, dotted
lines to local maxima. A thinner
line style is used for those parts of
the curves where the correspond-
ing profiles exhibit overhangs. In
the insets �e�– �h� profiles for dif-

ferent values of � f̃ , h̃0� are de-

picted �scaling is h̃ : �̃=5:3�. In
the inset on the left lower corner

the total energy Ẽ is plotted as a
function of detachment angle �

for different forces f̃ �see text for
further explanation�.

FIG. 9. Scaled detachment force f̃det as a function of scaled
adhesion energy w̃ for four values of the scaled tension, �̃= 1

16, 1
4 , 1,

and 4 ��̃ increasing from left to right�.
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adhesion �e.g., w̃thr�1/16�=0.22 compared to w̃thr�1�=1.25�.
In the large-w̃ limit f̃det / w̃=Fdet /2	Rw finally approaches a
limit which is independent of � and � and only depends on
the geometry. The elasticity of the membrane no longer in-
fluences the measurement of the adhesion energy—not be-
cause the membrane is not deformed, but rather because its
deformation energy is subdominant to adhesion. But for
more realistic smaller values of w̃ this decoupling does not
happen, and adhesion energies can only be inferred from the
detachment force when a full profile calculation is per-
formed.

At higher values of �̃ also other qualitative features �such
as additional instabilities� occur. However, these ramifica-
tions will not be discussed in the present work.

�e� Tethers. Characteristically, the detachment happens at

deep indentations �h̃0 close to the maximum indentation pos-
sible�. Long pulled-out membrane tubes �“tethers”�, as they
have been studied in the literature �29,30,43�, are not ob-
served. Even though in our calculations we find profiles with

h̃0�0, these solutions either correspond to energetic
maxima, or they are only local minima—with the global

minimum at h̃0�0 corresponding to a significantly lower
energy. This is a consequence of the adhesion balance
present in our situation: upon pulling upwards, it is more
favorable for the tip either to be “sucked in” completely or to
detach from the membrane, rather than forming a long tether.
As Fig. 8 shows, there is a very small “window of opportu-

nity” at f̃ �−5 where �locally� stable solutions pulled above
the surface exist. Yet, their profiles look essentially like the
ones of inset f or g and show no resemblance to real long
tethers. Upon increasing the force they become unstable,
such that the tip either falls off the membrane, or is drawn
below the membrane plane �notice that there exist two

minima at f̃ slightly smaller than −5, but both at positive
indentation�.

This analysis shows that it appears impossible to pull teth-
ers using a probe with a certain binding energy, despite ex-
isting experiments in which tethers of micrometer size were
generated �13,16,43�. Consequently, the assumption of an ad-
hesion balance does not seem to be correct in these cases.
Indeed, in these studies the experimental setup was different
�membrane-covered micron-sized beads �13,43� and AFM
tips covered by lipid multilayers �16��. In the present situa-
tion tethers are also observed �26�, but these events are not
very reproducible, and based on the above calculations we
would tentatively attribute them to a pinning of the mem-
brane at some irregularity of the tip.

V. DISCUSSION

In the previous sections we have discussed the indentation
of a pore-spanning bilayer by an AFM tip. We have seen that
the force-distance curves show a linear behavior for small
forces in a broad parameter range if the adhesion between tip
and membrane vanishes. Even though this is in agreement
with recent experiments ��26�, see also Fig. 5�, such a linear
behavior is unfortunately too featureless to reveal the values
of both elastic material constants, � and �.

One way out of this apparent cul-de-sac would be to re-
peat the experiment for different pore radii Rpore while keep-
ing all other parameters fixed. Since � and � are the same for
all pore sizes in that case, it should be possible to extract
their value from the measured force-distance curves. Note
that one does not have to fit both parameters simultaneously
if one at first considers a pore where the radius is much
larger than the characteristic lengthscale � �see Eq. �2��. The
corresponding system is in the high tension regime and the
force-distance relation only depends on the surface tension
�see Sec. IV A�. After determining � from the resulting
curve, one may subsequently extract the value of � from a
measurement of a system with smaller pore size.

The elastic constants can also be obtained by considering
systems where the adhesion w between tip and membrane
has been increased experimentally. As we have seen, the
curves change their behavior dramatically for w�0. It
should thus be possible to fit two parameters to the resulting
curves which would yield a local � and � in one fell swoop
whereas w can simultaneously be determined from the
snap-on of the tip upon approach to the bilayer. The experi-
mentalist, however, has to make sure in that case that the line
of contact between tip and membrane is really due to a force
balance as described in this paper and not due to other effects
such as pinning of the membrane to single spots on the tip. In
practice, this is rather difficult and will be a challenge for
future experiments.

One also has to keep in mind that the assumption of a
perfect parabolic tip is quite simplistic compared to the ex-
perimental situation. It is probably valid in the vicinity of the
apex but generally fails further up. Since the force-distance
behavior close to the depth-saturation depends strongly on
the actual tip shape, one can only use that part of the force-
distance curve for data interpretation where the indentation is
still small. To predict the whole behavior the exact indenter
shape has to be known: as long as the situation stays axisym-
metric one may, in principle, redo the calcutions of this pub-
lication with the new shape. This is, however, rather tedious
and therefore inexpedient in practice.

Our theorical approach does not account for hydrody-
namic effects although the whole setup is in water and the
AFM tip is moved with a certain velocity. First measure-
ments have shown, however, that it is possible to increase the
velocity of the tip up to 60 �m s−1 without altering the force-
distance curves dramatically �26�. One can understand this
result with the help of the following simple estimate: assume
that the tip is a sphere of radius Rtip moving with the velocity
v in water. When indenting the membrane to a distance d it
will also have to overcome a dissipative hydrodynamic force
Fdiss in addition to the elastic resistance of the membrane.
The energy dissipated in this process, Ediss=Fdissd
=6	�Rtipvd, is of the order of the thermal energy if typical
values are inserted ��=10−3 Pa s, Rtip=10 nm, v
=60 �m s−1, d=100 nm�. This is substantially smaller than
the corresponding elastic energy Eelast. Complications arising
from a correct hydrodynamical treatment were thus omitted
here.

Including adhesion, the velocity of the measurement
should nevertheless be as slow as possible to ensure that the
line of contact equilibrates due to the force balance. If this is
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guaranteed, one can also check whether the predicted linear
behavior between detachment force and adhesion is actually
valid.
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APPENDIX A: BOUNDARY CONDITIONS

In this appendix we will explain the origin of the bound-
ary conditions �5� and �11�: Equations �6a� follow simply
from the requirement of continuity at the pore rim and the
point where the membrane leaves the tip. Asking for a mem-
brane that has no kinks and thus no diverging bending energy
gives Eqs. �6b� and �11a�.

If the membrane is free to choose its point of detachment
as it is assumed here, an adhesion balance at the tip yields
another boundary condition for the contact curvatures �6c�
and �11b� �see ��51�, Sec. 12, problem �6��, �36�, and �39��.
In Ref. �39� a quick derivation can be found for the axisym-
metric case in the constant height ensemble: varying the
point of contact changes the energy of the free profile but
also the energy due to the part at the tip. By setting the total
variation to zero one obtains the well-known contact curva-
ture condition �Eq. �6c� in Monge gauge�. Observe that this
assumes differentiability of the energy as a function of con-

tact point position. In the force ensemble an extra term F̃�h
has to be added to the variation of the bound membrane. A
term that is equal and opposite, however, enters the variation
of the free membrane via the Hamiltonian �9�. In total, both
terms cancel and one again obtains the same condition �Eq.
�11b� in angle-arclength parametrization�.

The remaining condition �11c� stems from the fact that the
total arclength is not a conserved quantity, which it would be
if we used a fixed interval of integration. Relaxing this un-
physical constraint requires the Hamiltonian to vanish
�34,59�.

APPENDIX B: CALCULATION OF THE FORCE
VIA THE STRESS TENSOR

If the shape of the free membrane is known, the stress
tensor fa �a� �1,2�� can be evaluated at every point of the
surface �free. The integral of its flux through an arbitrary
contour � which encloses the tip gives the force �52�

F = − eh · �
�

ds

�

2
�K�

2 − K	
2� − ��l − ����K�n� .

�B1�

The normal vectors l and n are perpendicular to � and to
each other in every point of the curve. In addition, l is tan-
gential to the surface whereas n is normal to it. K� and K	

are the curvatures perpendicular �in direction of l� and tan-
gential to the curve. The symbol �� denotes the derivative
along l.

In angle-arclength parametrization, the curvatures are

given by: K�=−�̇, K	 =−sin��� /�, and K=−p� / �2��. Equa-
tion �B1� can then be written

F = −
�

2
�

�

ds

��̇2 −
sin2 �

�2 � − ��sin �

+
1

�
�ṗ� −

p�

�
�̇�cos �� . �B2�

The integrand can be evaluated further by inserting the
Hamilton equations �10� and making use of the fact that the
Hamiltonian �9� is zero. One obtains

F =
�

2
�

�

ds� pz + F̃

�
� . �B3�

If we now exploit axial symmetry by integrating around a
circle of radius �=Rint, we finally get F= pz+F; the momen-
tum pz conjugate to z has to vanish identically which implies

that the Lagrange multiplier function �z is equal to F̃. This at
first maybe surprising result is no coincidence at all. In fact,
in Ref. �59� it was shown that the Lagrange multiplier func-
tions which fix the geometrical constraints are closely related
to the external forces via the conservation of stresses.

Expression �B1� can also be translated into “Monge
gauge.” If we again exploit axial symmetry and integrate
around a circle of radius �=Rint, it reads

F = − 2	Rint�

�

2
�h����2

g3 −
h����2

�2g
� − ��h����

�g

+ ��h����
�g3

+
h����
��g

��1

g��
�=Rint

, �B4�

where g=1+h����2. Note that the dash denotes derivatives
with respect to �.

If in particular we choose to evaluate the force at
Rint=Rpore, the expression �B4� simplifies considerably to
Eq. �7�.

APPENDIX C: NUMERICAL CALCULATIONS

The Hamilton equations �10� were solved by using a
shooting method �60�: for a trial contact point c Eqs. �10�
were integrated with a fourth-order Runge-Kutta method.
The value of c determined the contact angle � and with it �,
�, p�, and p� at s=s� via the boundary conditions �11�. The
integration was stopped as soon as � was equal or greater
than Rpore. To reach Rpore exactly one extra integration with
the correct stepsize backwards was performed. Finally, the
value�s� of c for which �=0 at Rpore were identified for fixed
parameters F, �, w, etc.

If the calculation had been done in the constant height
ensemble, one would additionally have to check whether the
correct indentation h0 was reached at �=Rpore after shooting.
In the constant force ensemble this complication of meeting
a second condition is avoided which is why we chose to use
it for the nonlinear calculations.
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